مشاور شما در زمینه پروژه های برنامه نویسی
و مهندسی نرم افزار
09131253620
همیشه در دسترس
(حتی روزهای تعطیل)
 
جستجو در پروژه های وب سایت
صفحه اصلی    |    جستجو در پروژه ها    |    درخواست نمونه پروژه    |    ثبت نام در وب سایت    |    ورود به حساب کاربری    |    سوالات قبل و بعد از خرید    |    درخواست استخدام    |     ارتباط با ما     |    نقشه وب سایت     
مشاهده جزئیات پروژه
>>>>مشاهده سایر پایان نامه های رشته فیزیک >>>>

>>>> مشاهده پایان نامه ها به تفکیک رشته >>>>

>>>> مشاهده لیست کامل لیست انواع پایان نامه ها <<<<


 
  خرید
کد پروژه: PA-40096
موضوع پروژه:

مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغييرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع

گروه پروژه: لیست انواع پایان نامه ها
تعداد مشاهدات: 898
قیمت: 91000 (قیمت به ریال)
قالب فایل: Word
تعداد صفحات: 143
شرح پروژه:
فهرست مطالب

1-1 مقدمه 2
1-2 مدلهای ترانسفورماتور 3
1-2-1 معرفی مدل ماتریسي Matrix Representation (BCTRAN Model) 4
1-2-2 مدل ترانسفورماتور قابل اشباع  Saturable Transformer Component (STC Model) 6
1-2-3 مدلهای بر مبنای توپولوژی Topology-Based Models 7
2- مدلسازی ترانسفورماتور 13
2-1 مقدمه 13
2-2 ترانسفورماتور ايده آل 14
2-3 معادلات شار نشتی 16
2-4 معادلات ولتاژ 18
2-5 ارائه مدار معادل 20
2-6 مدلسازی ترانسفورماتور دو سيم پيچه 22
2-7 شرايط پايانه ها (ترمينالها) 25
2-8 وارد کردن اشباع هسته به شبيه سازی 28
2-8-1 روشهاي وارد کردن اثرات اشباع هسته 29
2-8-2 شبيه سازي رابطه بين  و   33
2-9 منحنی اشباع با مقادير لحظهای 36
2-9-1 استخراج منحنی مغناطيس کنندگی مدار باز با مقادير لحظهای 36
2-9-2 بدست آوردن ضرايب معادله انتگرالي 39
2-10 خطاي استفاده از منحني مدار باز با مقادير RMS 41
2-11 شبيه سازي ترانسفورماتور پنج ستوني در حوزه زمان 43
2-11-1 حل عددي معادلات ديفرانسيل 47
2-12 روشهاي آزموده شده براي حل همزمان معادلات ديفرانسيل 53
3- انواع خطاهاي نامتقارن و اثر اتصالات ترانسفورماتور روي آن 57
3-1 مقدمه 57
3-2 دامنه افت ولتاژ 57
3-3 مدت افت ولتاژ 57
3-4 اتصالات سيم پيچی ترانس 58
3-5 انتقال افت ولتاژها از طريق ترانسفورماتور 59
3-5-1 خطاي تكفاز، بار با اتصال ستاره، بدون ترانسفورماتور 59
3-5-2 خطاي تكفاز، بار با اتصال مثلث، بدون ترانسفورماتور 59
3-5-3 خطاي تكفاز، بار با اتصال ستاره، ترانسفورماتور نوع دوم 60
3-5-4 خطاي تكفاز، بار با اتصال مثلث، ترانسفورماتور نوع دوم 60
3-5-5 خطاي تكفاز، بار با اتصال ستاره، ترانسفورماتور نوع سوم 60
3-5-6 خطاي تكفاز، بار با اتصال مثلث، ترانسفورماتور نوع سوم 60
3-5-7 خطاي دو فاز به هم، بار با اتصال ستاره، بدون ترانسفورماتور 61
3-5-8 خطاي دو فاز به هم، بار با اتصال مثلث، بدون ترانسفورماتور 61
3-5-9 خطاي دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع دوم 61
3-5-10 خطاي دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع دوم 61
3-5-11 خطاي دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع سوم 62
3-5-12 خطاي دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع سوم 62
3-5-13 خطاهاي دو فاز به زمين 62
3-6 جمعبندي انواع خطاها 64
3-7 خطاي TYPE A ، ترانسفورماتور DD 65
3-8 خطاي TYPE B ، ترانسفورماتور DD 67
3-9 خطاي TYPE C ، ترانسفورماتور DD 69
3-10 خطاهاي TYPE D و TYPE F و TYPE G ، ترانسفورماتور DD 72
3-11 خطاي TYPE E ، ترانسفورماتور DD 72
3-12 خطاهاي نامتقارن ، ترانسفورماتور YY 73
3-13 خطاهاي نامتقارن ، ترانسفورماتور YGYG 73
3-14 خطاي TYPE A ، ترانسفورماتور DY 73
3-15 خطاي TYPE B ، ترانسفورماتور DY 74
3-16 خطاي TYPE C ، ترانسفورماتور DY 76
3-17 خطاي TYPE D ، ترانسفورماتور DY 77
3-18 خطاي TYPE E ، ترانسفورماتور DY 78
3-19 خطاي TYPE F ، ترانسفورماتور DY 79
3-20 خطاي TYPE G ، ترانسفورماتور DY 80
3-21 شكل موجهاي ولتاژ – جريان ترانسفورماتور پنج ستوني براي خطاي TYPE A شبيه سازي با PSCAD 81
شبيه سازي با برنامه نوشته شده 83
3-22 شكل موجهاي ولتاژ – جريان ترانسفورماتور پنج ستوني براي خطاي TYPE B شبيه سازي با PSCAD 85
شبيه سازي با برنامه نوشته شده 87
3-23 شكل موجهاي ولتاژ – جريان ترانسفورماتور پنج ستوني براي خطاي TYPE C شبيه سازي با PSCAD 89
شبيه سازي با برنامه نوشته شده 91
3-24 شكل موجهاي ولتاژ – جريان ترانسفورماتور پنج ستوني براي خطاي TYPE D شبيه سازي با PSCAD 93
شبيه سازي با برنامه نوشته شده 95
3-25 شكل موجهاي ولتاژ – جريان ترانسفورماتور پنج ستوني براي خطاي  TYPE E شبيه سازي با PSCAD 97
شبيه سازي با برنامه نوشته شده 99
3-26 شكل موجهاي ولتاژ – جريان ترانسفورماتور پنج ستوني براي خطاي TYPE F شبيه سازي با PSCAD 101
شبيه سازي با برنامه نوشته شده 103
3-27 شكل موجهاي ولتاژ – جريان ترانسفورماتور پنج ستوني براي خطاي TYPE G شبيه سازي با PSCAD 105
شبيه سازي با برنامه نوشته شده 107
3-28 شكل موجهاي ولتاژ – جريان چند باس شبكه 14 باس IEEE براي خطاي TYPE D در باس 5 109
3-29 شكل موجهاي ولتاژ – جريان چند باس شبكه 14 باس IEEE براي خطاي TYPE G در باس 5 112
3-30 شكل موجهاي ولتاژ – جريان چند باس شبكه 14 باس IEEE براي خطاي TYPE A در باس 5 115
4- نتيجه گيري و پيشنهادات 121
مراجع 123

















فهرست شكلها

شكل (1-1) مدل ماتريسي ترانسفورماتور با اضافه كردن اثر هسته صفحه 5
شكل (1-2) ) مدار ستاره¬ي مدل ترانسفورماتور قابل اشباع صفحه 6
شكل (1-3) ترانسفورماتور زرهی تک فاز صفحه 9
شكل (1-4) مدار الکتريکی معادل شكل (1-3) صفحه 9
شكل (2-1) ترانسفورماتور صفحه 14
شكل (2-2) ترانسفورماتور ايده ال صفحه 14
شكل (2-3) ترانسفورماتور ايده ال بل بار صفحه 15
شكل (2-4) ترانسفورماتور با مولفه های شار پيوندی و نشتي صفحه 16
شكل (2-5) مدرا معادل ترانسفورماتور صفحه 20
شكل (2-6) دياگرام شبيه سازی يک ترانسفورماتور دو سيم پيچه صفحه 24
شكل (2-7) ترکيب RL موازی صفحه 26
شکل (2-8) ترکيب RC موازی صفحه 27
شكل (2-9) منحنی مغناطيس کنندگی مدار باز ترانسفورماتور صفحه 30
شكل (2-10) رابطه بين   و             
صفحه 30
شكل (2-11) دياگرام شبيه سازی يک ترانسفورماتور دو سيم پيچه با اثر اشباع صفحه 32
شكل (2-12) رابطه بين  و  
صفحه 32
شكل (2-13) رابطه بين  و  
صفحه 32
شكل (2-14) منحنی مدار باز با مقادير  rms صفحه 36
شكل (2-15) شار پيوندی متناظر شكل (2-14) سينوسی صفحه 36
شکل (2-16) جريان لحظه ای متناظر با تحريک ولتاژ سينوسی صفحه 36
شكل (2-17) منحني مدار باز با مقادير لحظه¬اي صفحه 40
شكل (2-18) منحني مدار باز با مقادير rms صفحه 40
شكل (2-19) ميزان خطاي استفاده از منحني rms   صفحه 41
شكل (2-20) ميزان خطاي استفاده از منحني لحظه¬اي صفحه 41
شكل (2-21) مدار معادل مغناطيسي ترانسفورماتور سه فاز سه ستونه صفحه 42
شكل (2-22) مدار معادل الكتريكي ترانسفورماتور سه فاز سه ستونه صفحه 43
شكل (2-23) مدار معادل مغناطيسي ترانسفورماتور سه فاز پنج ستونه صفحه 44
شكل (2-24) ترانسفورماتور پنج ستونه صفحه 45
شكل (2-25) انتگرالگيري در يك استپ زماني به روش اولر صفحه 47
شكل (2-26) انتگرالگيري در يك استپ زماني به روش trapezoidal صفحه 49
شكل (3-1) دياگرام فازوري خطاها صفحه 62
شكل (3-2) شكل موج ولتاژ Vab صفحه 63
شكل (3-3)  شكل موج ولتاژ Vbc صفحه 63
شكل (3-4) شكل موج ولتاژ Vca صفحه 63
شكل (3-5)  شكل موج ولتاژ Vab صفحه 63
شكل (3-6) شكل موج جريان iA صفحه 64
شكل (3-7) شكل موج جريان iB صفحه 64
شكل (3-8) شكل موج جريان iA صفحه 64
شكل (3-9) شكل موج جريان iA صفحه 64
شكل (3-10)  شكل موجهاي ولتاژ Va , Vb , Vc صفحه 65 
شكل (3-11)  شكل موجهاي ولتاژ Va , Vb , Vc صفحه 68
شكل (3-12)  شكل موجهاي جريان ia , ib , ic صفحه 68
شكل (3-13)  شكل موجهاي ولتاژ Va , Vb , Vc صفحه 69
شكل (3-14)  شكل موجهاي ولتاژ Va , Vb , Vc صفحه 69
شكل (3-15)  شكل موجهاي جريان , iB iA صفحه 69
شكل (3-16)  شكل موج جريان iA صفحه 70
شكل (3-16)  شكل موج جريان iB صفحه 70
شكل (3-17)  شكل موج جريان iC صفحه 70
شكل (3-18)  شكل موجهاي ولتاژ Va , Vb , Vc صفحه 71
شكل (3-19)  شكل موجهاي جريان ia , ib , ic صفحه 71
شكل (3-20)  شكل موجهاي ولتاژ Va , Vb , Vc صفحه 73
شكل (3-21)  شكل موجهاي جريان ia , ib , ic صفحه 73
شكل (3-22)  شكل موجهاي جريان ia , ib , ic صفحه 74
شكل (3-23) شكل موج ولتاژ Va صفحه 74
شكل (3-24) شكل موج ولتاژ Vb صفحه 74
شكل (3-25) شكل موج ولتاژ Vc صفحه 74
شكل (3-26) شكل موج جريانiA صفحه 74
شكل (3-27) شكل موج جريان iB صفحه 74
شكل (3-28) شكل موج جريان iC صفحه 74
شكل (3-29) شكل موج جريانiA صفحه 75
شكل (3-30) شكل موج جريان iB صفحه 75
شكل (3-31) موج جريان iC صفحه 75
شكل (3-32) شكل موج جريانiA صفحه 75
شكل (3-33) شكل موج جريان iB صفحه 75
شكل (3-34) شكل موج جريان iC صفحه 75
شكل (3-35) شكل موج ولتاژ Va صفحه 76
شكل (3-36) شكل موج ولتاژ Vb صفحه 76
شكل (3-37) شكل موج ولتاژ Vc صفحه 76
شكل (3-38) شكل موج جريانiA صفحه 76
شكل (3-39) شكل موج جريان iB صفحه 76
شكل (3-40) شكل موج جريان iC صفحه 76
شكل (3-41) شكل موج جريانiA صفحه 76
شكل (3-42) شكل موج جريان iB صفحه 76
شكل (3-43) شكل موج جريان iC صفحه 76
شكل (3-44) شكل موج ولتاژ Va صفحه 77
شكل (3-45) شكل موج ولتاژ Vb صفحه 77
شكل (3-46) شكل موج ولتاژ Vc صفحه 77
شكل (3-47) شكل موج جريانiA صفحه 77
شكل (3-48) شكل موج جريان iB صفحه 77
شكل (3-49) شكل موج جريان iC صفحه 77
شكل (3-50) شكل موج جريانiA صفحه 77
شكل (3-51) شكل موج جريان iB صفحه 77
شكل (3-52) شكل موج جريان iC صفحه 77
شكل (3-53) شكل موج ولتاژ Va صفحه 78
شكل (3-54) شكل موج ولتاژ Vb صفحه 78
شكل (3-55) شكل موج ولتاژ Vc صفحه 78
شكل (3-56) شكل موج جريانiA صفحه 78
شكل (3-57) شكل موج جريان iB صفحه 78
شكل (3-58) شكل موج جريان iC صفحه 78
شكل (3-59) شكل موج جريانiA صفحه 78
شكل (3-60)  شكل موج جريان iB صفحه 78
شكل (3-61) شكل موج جريان iC صفحه 78
شكل (3-62) شكل موج ولتاژ Va صفحه 79
شكل (3-63) شكل موج ولتاژ Vb صفحه 79
شكل (3-64) شكل موج ولتاژ Vc صفحه 79
شكل (3-65) شكل موج جريانiA صفحه 79
شكل (3-66) شكل موج جريان iB صفحه 79
شكل (3-67) شكل موج جريان iC صفحه 79
شكل (3-68) شكل موج جريانiA صفحه 79
شكل (3-69) شكل موج جريان iB صفحه 79
شكل (3-70) شكل موج جريان iC صفحه 79
شكل (3-71) شكل موج ولتاژ Va صفحه 80
شكل (3-72)  شكل موج ولتاژ Vb صفحه 80
شكل (3-73) شكل موج ولتاژ Vc صفحه 80
شكل (3-74) شكل موج جريانiA صفحه 80
شكل (3-75) شكل موج جريان iB صفحه 78
شكل (3-76) شكل موج جريان iC صفحه 80
شكل (3-77) شكل موج جريانiA صفحه 80
شكل (3-78) شكل موج جريان iB صفحه 80
شكل (3-79) شكل موج جريان iC صفحه 80
شكل (3-80) شكل موجهاي ولتاژ) (kV با PSCAD صفحه 81
شكل (3-81) شكل موجهاي ولتاژ) (kV با PSCAD صفحه 81
شكل (3-82) شكل موجهاي جريان) (kV با PSCAD صفحه 82
شكل (3-83) شكل موجهاي جريان) (kV با PSCAD صفحه 82
شكل (3-84) شكل موجهاي ولتاژ با برنامه نوشته شده صفحه 83
شكل (3-85) شكل موجهاي ولتاژ با برنامه نوشته شده صفحه 83
شكل (3-86) شكل موجهاي جريان با برنامه نوشته شده صفحه 84
شكل (3-87) شكل موجهاي جريان با برنامه نوشته شده صفحه 84
شكل (3-88) شكل موجهاي ولتاژ) (kV با PSCAD صفحه 85
شكل (3-89) شكل موجهاي ولتاژ) (kV با PSCAD صفحه 85
شكل (3-90) شكل موجهاي جريان) (kV با PSCAD صفحه 86
شكل (3-91) شكل موجهاي جريان) (kV با PSCAD صفحه 86
شكل (3-92) شكل موجهاي ولتاژ با برنامه نوشته شده صفحه 87
شكل (3-93) شكل موجهاي ولتاژ با برنامه نوشته شده صفحه 87
شكل (3-94) شكل موجهاي جريان با برنامه نوشته شده صفحه 88
شكل (3-95) شكل موجهاي جريان با برنامه نوشته شده صفحه 88
شكل (3-96) شكل موجهاي ولتاژ) (kV با PSCAD صفحه 89
شكل (3-97) شكل موجهاي ولتاژ) (kV با PSCAD صفحه 89
شكل (3-98) شكل موجهاي جريان) (kV با PSCAD صفحه 90
شكل (3-99) شكل موجهاي جريان) (kV با PSCAD صفحه 90
شكل (3-100) شكل موجهاي ولتاژ با برنامه نوشته شده صفحه 91
شكل (3-101) شكل موجهاي ولتاژ با برنامه نوشته شده صفحه 91
شكل (3-102) شكل موجهاي جريان با برنامه نوشته شده صفحه 92
شكل (3-103) شكل موجهاي جريان با برنامه نوشته شده صفحه 92
شكل (3-104) شكل موجهاي ولتاژ) (kV با PSCAD صفحه 93
شكل (3-105) شكل موجهاي ولتاژ) (kV با PSCAD صفحه 93
شكل (3-106) شكل موجهاي جريان) (kV با PSCAD صفحه 94
شكل (3-107) شكل موجهاي جريان) (kV با PSCAD صفحه 94
شكل (3-108) شكل موجهاي ولتاژ با برنامه نوشته شده صفحه 95
شكل (3-109) شكل موجهاي ولتاژ با برنامه نوشته شده صفحه 95
شكل (3-110) شكل موجهاي جريان با برنامه نوشته شده صفحه 96
شكل (3-111) شكل موجهاي جريان با برنامه نوشته شده صفحه 96
شكل (3-112) شكل موجهاي ولتاژ) (kV با PSCAD صفحه 97
شكل (3-113) شكل موجهاي ولتاژ) (kV با PSCAD صفحه 97
 شكل (3-114) شكل موجهاي جريان) (kV با PSCAD صفحه 98
شكل (3-115) شكل موجهاي جريان) (kV با PSCAD صفحه 98
شكل (3-116) شكل موجهاي ولتاژ با برنامه نوشته شده صفحه 99
شكل (3-117) شكل موجهاي ولتاژ با برنامه نوشته شده صفحه 99
شكل (3-118) شكل موجهاي جريان با برنامه نوشته شده صفحه 100
شكل (3-119) شكل موجهاي جريان با برنامه نوشته شده صفحه 100
شكل (3-120) شكل موجهاي ولتاژ) (kV با PSCAD صفحه 101
شكل (3-121) شكل موجهاي ولتاژ) (kV با PSCAD صفحه 101
شكل (3-122) شكل موجهاي جريان) (kV با PSCAD صفحه 102
شكل (3-123) شكل موجهاي جريان) (kV با PSCAD صفحه 102
شكل (3-124) شكل موجهاي ولتاژ با برنامه نوشته شده صفحه 103
شكل (3-125) شكل موجهاي ولتاژ با برنامه نوشته شده صفحه 103
شكل (3-126) شكل موجهاي جريان با برنامه نوشته شده صفحه 104
شكل (3-127) شكل موجهاي جريان با برنامه نوشته شده صفحه 104
شكل (3-128) شكل موجهاي ولتاژ) (kV با PSCAD صفحه 105
شكل (3-129) شكل موجهاي ولتاژ) (kV با PSCAD صفحه 105
شكل (3-130) شكل موجهاي جريان) (kV با PSCAD صفحه 106
شكل (3-131) شكل موجهاي جريان) (kV با PSCAD صفحه 106
شكل (3-132) شكل موجهاي ولتاژ با برنامه نوشته شده صفحه 107
شكل (3-133) شكل موجهاي ولتاژ با برنامه نوشته شده صفحه 107
شكل (3-134) شكل موجهاي جريان با برنامه نوشته شده صفحه 108
شكل (3-135) شكل موجهاي جريان با برنامه نوشته شده صفحه 108
شكل (3-136) شكل موجهاي ولتاژ) (kV صفحه 109
شكل (3-137) شكل موجهاي ولتاژ) (kV صفحه 110
شكل (3-138) شكل موجهاي جريان (kA) صفحه 111
شكل (3-139) شكل موجهاي ولتاژ) (kV صفحه 112
شكل (3-140) شكل موجهاي ولتاژ) (kV صفحه 113
شكل (3-141) شكل موجهاي جريان (kA) صفحه 114
شكل (3-142) شكل موجهاي جريان (kA) صفحه 115
شكل (3-143) شكل موجهاي جريان (kA) صفحه 116
شكل (3-144) شكل موجهاي جريان (kA) صفحه 117
شكل (3-145) شبكه 14 باس IEEE صفحه 118



 


فصل 1


 

مقدمه

1-1 مقدمه 

يکی از ضعيفترين عناصر نرم افزارهای مدرن شبيه سازی، مدل ترانسفورماتور است و فرصتهای زيادی برای بهبود شبيه¬سازی رفتارهای پيچيده ترانسفورماتور وجود دارد، که شامل اشباع هسته مغناطيسی، وابستگی فرکانسی، تزويج خازنی، و تصحيح ساختاری هسته و ساختار سيم پيچی است. 
مدل ترانسفورماتور بواسطه فراوانی طراحيهای هسته و همچنين به دليل اينکه برخی از پارامترهای ترانسفورماتور هم غير خطی و هم به فرکانس وابسته¬اند، می تواند بسيار پيچيده باشد. ويژگيهای فيزيکی رفتاری که، با در نظر گرفتن فرکانس، لازم است برای يک مدل ترانسفورماتور بدرستی ارائه شود عبارتند از:
پيکربنديهای هسته و سيم پيچی،
اندوکتانسهای خودی و متقابل بين سيم پيچها،
شارهای نشتی،
اثر پوستی و اثر مجاورت در سيم پيچها،
اشباع هسته مغناطيسی،
هيسترزيس و تلفات جريان گردابی در هسته،
و اثرات خازنی.
مدلهايی با پيچيدگيهای مختلف در نرم افزارهای گذرا برای شبيه سازي رفتار گذرای ترانسفورماتورها، پياده سازی شده است. اين فصل يک مرور بر مدلهای ترانسفورماتور، برای شبيه سازی پديده های گذرا که کمتر از رزونانس سيم پيچ اوليه (چند کيلو هرتز) است، می باشد، که شامل فرورزونانس، اکثر گذراهای کليدزنی، و اثر متقابل هارمونيکها است.


1-2 مدلهای ترانسفورماتور
يک مدل ترانس را می توان به دو بخش تقسيم کرد:
معرفی سيم پيچها.
و معرفی هسته آهنی.
اولين بخش خطی است، و بخش دوم غير خطی، و هر دوی آنها وابسته به فرکانس است. هر يك از اين دو بخش بسته به نوع مطالعه¬ای که به مدل ترانسفورماتور نياز دارد، نقش متفاوتی بازی می¬کند. برای نمونه، در شبيه¬سازيهاي فرورزونانس، معرفي هسته حساس است ولی در محاسبات پخش بار و اتصال کوتاه صرفنظر می¬شود.
برای کلاس بندی مدلهای ترانسفورماتور چند معيار را می¬توان بکاربرد:
تعداد فازها،
رفتار (پارامترهای خطی/ غير خطی، ثابت/ وابسته به فرکانس)،
و مدلهای ریاضی.
با دسته¬بندي مدلسازي ترانسفورماتورها، مي¬توان آنها را به سه گروه تقسيم كرد.
اولین گروه از ماتريس امپدانس شاخه يا ادميتانس استفاده می¬کند.
گروه دوم توسعه مدل ترانسفورماتور قابل اشباع به ترانسفورماتورهای چند فاز است. هر دو نوع مدل در نرم افزار EMTP پياده سازی شده است، و هر دوی آنها برای شبيه سازی برخی از طراحيهای هسته، محدوديتهای جدی دارد.
وگروه سوم مدلهای براساس توپولوژی، كه گروه بزرگی را تشکيل می دهد و روشهای زيادی بر اساس آن ارائه شده است. اين مدلها از توپولوژی هسته بدست می آید و می¬تواند بصورت دقيق هر نوع طراحی هسته را در گذراهای فرکانس پايين، در صورتيکه پارامترها بدرستی تعيين شود، مدل کند.


1-2-1 معرفی مدل ماتریسي Matrix Representation (BCTRAN Model)
معادلات حالت دائم يک ترانسفورماتور چند سيم پيچه چند فاز را می¬توان با استفاده از ماتريس امپدانس شاخه بيان کرد:

(1-1)  

در  محاسبات گذرا، رابطه فوق بايد بصورت زير نوشته شود:

(1-2)  

 که   و   به ترتيب بخش حقيقی و موهومی   هستند، که المانهای آنها را می¬توان از آزمایشهای تحريک بدست آورد.
اين روش دارای تزويج فاز به فاز است، که ويژگیهای ترمينال ترانسفورماتور را مدل می¬کند، ولی فرقی بين توپولوژی هسته و سيم پيچ قائل نمی¬شود زيرا در همه طراحيهای هسته، رفتار رياضی يکسان اعمال می¬شود.
همچنين چون ماتريس امپدانس شاخه   برای جريانهای تحريکِ بسيار کم يا هنگامی که اين جريانهاي تحريك بطور کلی ناديده گرفته می¬شود، ماتريس منفرد  می¬شود، موجب ايجاد برخي مشكلات از لحاظ دقت در محاسبات فوق مي¬گردد[1]. بعلاوه، امپدانسهای اتصال کوتاه، که مشخصه¬های بسيار مهمی از ترانسفورماتور را توصيف می¬کند، در اندازه گيری با چنين تحريکهايی از دست می¬رود. برای حل اين مشکلات، ماتريس ادميتانس بايد استفاده شود:

(1-3) که   هميشه وجود دارد و عناصر آن مستقيما از آزمایشهای اتصال کوتاه استاندارد بدست می¬آيد.
برای مطالعات گذرا،   بايد به دو مولفه مقاومتی والقائی تقسيم شود و ترانسفورماتور با معادله زير توصيف مي¬گردد:

(1-4) همه اين مدلها خطی هستند، هر چند، در بسياری از مطالعات گذرا لازم است اثرات اشباع و هيسترزيس وجود داشته باشد. در اين حالت براي وارد كردن اثرات اشباع، اثرات جريان تحريک را می¬توان خطی کرد و در ماتريس توصيف مدل قرار داد، ولي اين کار در زمان اشباع هسته می¬تواند منجر به خطاهاي شبیه سازی شود.
در روش ديگر، تحريک از ماتريس توصيف مدل حذف می¬شود و بصورت خارجی بصورت عناصر غير خطی به ترمينالهای مدلها متصل می¬شود (شکل 1-1).

 چنين اتصال خارجی برای هسته هميشه از نظر توپولوژی درست نيست، اما در بسياری از موارد بخوبی کفايت می¬کند.
اگر چه اين مدلها از نظر تئوری برای فرکانسی که اطلاعات پلاک در آن بدست آمده است، معتبر است، با اين حال بطور منطقی برای فرکانس های زير kHz 1 دقیق هستند.


1-2-2 مدل ترانسفورماتور قابل اشباع
             Saturable Transformer Component (STC Model)

اين مدل بر مبنای مدار ستاره است (شکل 1-2 ). شاخه اصلی بعنوان يک شاخه R-L تزویج نشده است، و هر يک از سيم پيچهای ديگر بعنوان ترانسفورماتور دو سيم پيچه هستند.

 
شكل (1-2) ) مدار ستاره¬ي مدل ترانسفورماتور قابل اشباع
معادله يک ترانسفورماتور N سيم پيچه تک فاز، بدون هسته، همان شکل معادله (1-4) را دارد، هر چند، ضرب ماتریس   متقارن است، که بطور کلی درست نيست[2]. اثرات اشباع و هيسترزيس با اضافه کردن يک القاگر غير خطی اضافی در نقطه ستاره مدل می¬شود. مدل STC می¬تواند با اضافه کردن پارامتر رلوکتانس توالی صفر، به ترانسفورماتور سه فاز توسعه یابد، اما كاربرد آن محدود می¬شود. اطلاعات ورودی شامل مقادیرR-L  هر شاخه ستاره، نسبت دورها، و اطلاعاتی برای شاخه مغناطيس کننده است.
اين مدل دارای محدودیتهای عمده¬ای است:
اين مدل را برای بيش از سه سيم پيچ نمی توان بکار برد، چون مدار ستاره برای N > 3 معتبر نيست،
اندوکتانس مغناطيس کننده   با مقاومت   بصورت موازی، به نقطه ستاره متصل شده است، که هميشه از لحاظ توپولوژی نقطه اتصال درستی نيست،

HyperLink
این مطلب را به اشتراک بگذارید:

     
Design And programming By www.bitasoft.ir